
Faster symmetric matrix multiplication with ThunderKittens

Laker Newhouse
Department of Mathematics

Massachusetts Institute of Technology
Cambridge, MA, USA

lakern@mit.edu

Dakota Goldberg
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

dakotag@mit.edu

Ricardo Ruiz
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

ruizr@mit.edu

Abstract—The Muon optimizer shows promise for speeding up
training in machine learning by setting all gradient singular
values to 1, using iteration called Newton-Schulz. But on an
NVIDIA H100, PyTorch only captures 60% of this iteration’s
possible throughput. Using the ThunderKittens framework, we
design a new kernel for the symmetric matrix multiplication
that appears in Newton-Schulz. Our kernel achieves 1510
TFLOPS compared to PyTorch’s 774 TFLOPS on 8192x8192
symmetric matrices, translating to an overall speedup in
Newton-Schulz of up to 30%. We discuss how one could
distribute the kernel, then conclude with thoughts on Thun-
derKittens framework.

Code available at https://github.com/Arongil/thunder

1. Introduction

Training machine learning models takes a lot of com-
pute. The most popular optimizer people use for training is
Adam, or its variant AdamW, but there is a new optimizer
called Muon that may have better sample efficiency. For
GPT-2 scale transformer language models, Muon trains to
the same loss as a tuned AdamW using 30% less data [1].
Muon is built on ideas developed by Bernstein et al. [2, 3].
The main difference from Adam is that the gradient is sent
through the map

G 7→ UV ⊤, (1)

where G = UΣV ⊤ is the singular value decomposition.
Rather than compute an SVD, one can apply this map effi-
ciently on a GPU by iterating G under certain polynomials,
known as a Newton-Schulz iteration.

The purpose of this paper is to present a kernel that
speeds up the Newton-Schulz iteration. The idea is to replace
the general matrix multiplication XX⊤ with a special sym-
metric matrix multiplication kernel, which we call symmul.
Because the result of XX⊤ is symmetric, symmul computes

over only the lower triangular half of the output matrix and
copies the results to the upper triangular half.

In Section 2, we describe the Newton-Schulz iteration to
show why it is useful to build a specialized symmul kernel.
We additionally derive the most FLOP-efficient polynomial
to use. In Section 3, we present the symmul kernel. The sec-
tion begins with a primer on the ThunderKittens framework,
then describes the choices we made to design the kernel and
gives benchmarks. In Section 4, we describe next steps for
our kernel, including initial thoughts on how to distribute
over sharded matrices in clusters of GPUs. In Section 5,
we conclude with some thoughts on the ThunderKittens
framework.

2. What is Newton-Schulz?

Newton-Schulz is an algorithm that iteratively pushes
the singular values of a matrix closer to 1 [4]. It does so
by applying an odd polynomial, such as p(x) = 3

2x− 1
2x

3.
Odd polynomials act directly on the singular values:

f(G) = Uf(Σ)V ⊤

for G = UΣV ⊤. Therefore Newton-Schulz lets us to apply
any function f : R → R to the singular values of a matrix,
as long as we can approximate f with compositions of odd
polynomials. Equation 1 acts on the singular values via the
map x 7→ 1. One polynomial that approximates this function
when iterated is p(x) = 3

2x−
1
2x

3, but we can choose other
polynomials, too.

As a precursor to benchmarking Newton-Schulz using
our kernel compared to using PyTorch, this section calcu-
lates the FLOPs that Newton-Schulz requires for different
polynomial degrees. We also derive the optimal polynomial
choice. As far as we know, our FLOP ratio analysis is novel.

For concreteness, suppose X is n ×m, where n < m.
If m > n, we can transpose X . Our goal is to minimize the

https://github.com/Arongil/thunder


FLOPs we need to lift a singular value of 0.001 to at least
0.9, while limiting to send singular values close to 1. We
set this goal because achieving a 900x inflation factor for
small singular values approximates the map from 1. And we
allow some ϵ > 0 in the range [1 − ϵ, 1 + ϵ] that singular
values are sent to in the limit, typically ϵ = 0.3.

When iterating a polynomial on an input x ≪ 1, the
linear coefficient controls how quickly x increases. To go
from 0.001 to 0.9, if the coefficients were 1.5x − 0.5x3 it
would take 18 iterations; if the coefficients were 2x− x3 it
would take only 11. If we use fifth degree polynomials, we
can cause a 1000x inflation with just 5 iterations using 4x−
7x3 + 3.3x5. But every power we use means more matrix
multiplications. We will now consider the right balance.

Let A = (XX⊤). To apply a degree 2k+1 odd polyno-
mial to X , we need to compute (c0 + c1A+ · · ·+ ckA

k)X .
For k ≥ 1, the FLOPs required at each stage are as follows:

1) Computing A requires 1
2 (2n

2m) FLOPs, saving
50% thanks to symmetry.

2) Computing Al for 1 < l ≤ k can be done sequen-
tially for 1

2 (2n
3) FLOPs each, thanks to symmetry.

3) Adding up c0 + c1A+ · · ·+ ckA
k requires O(n2)

FLOPs, which we neglect.
4) Multiplying (c0 + c1A + · · · + ckA

k)X requires
2n2m FLOPs.

Therefore the total FLOPs to apply one iteration of a
polynomial of degree 2k + 1 in Newton-Schulz is

3n2m+ (k − 1)n3. (2)

Let us consider the case of n = 4096 and m = 16384,
which are viable dimensions for the MLP in a commercial
transformer model. The TFLOPs required to apply a poly-
nomial of degree 2k + 1 are

0.847 + 0.0685(k − 1).

For reference, recall that an H100 can reasonably attain
760 TFLOPS for general matrix multiplication (GEMM) of
bf16 values, out of a theoretical maximum of 989 TFLOPS.

We still have a choice over coefficients. Because the
linear coefficient controls growth near zero, we list below the
growth rate per TFLOP. We use the highest linear coefficient
possible before the polynomial diverges no matter our choice
of higher order terms:

1) Degree 3: best polynomial is 2.5x− 2.3148x3, for
growth factor 2.5/(0.847 TFLOPs) = 2.95 / TFLOP.

2) Degree 5: best polynomial is 4x−7x3+3.3x5, for
growth factor 4/(0.916 TFLOPs) = 4.37 / TFLOP.

3) Degree 7: best polynomial 5x−14.6x3+16.5x5−
5.86x7, for growth factor 5/(0.984 TFLOPs) = 5.08
/ TFLOP.

But this growth rate is not quite right. Iterating a poly-
nomial twice will add the TFLOPs but multiply the growth
from the linear coefficient. To make a single metric that is
preserved under composition, we take the log base 2 of the
linear coefficient to make it additive under iteration. Then

the log growth rate ratio for degrees 3, 5, and 7 are 1.561
/ TFLOP, 2.127 / TFLOP, and 2.345 / TFLOP.

The analysis indicates that the most effective polynomial
degree to use is 7. For this degree, the symmetric matrix
multiplication saves 0.42 TFLOPs, turning what would have
been 1.40 TFLOPs into 0.98 TFLOPs. Therefore symmul
has the potential for a 30% speedup.

3. ThunderKittens implementation

This section outlines the important design principles of
ThunderKittens (Section 3.1), describes our implementation
of symmul (Section 3.2), and benchmarks the new kernel
(Section 3.3).

3.1. ThunderKittens: A Guide for the Perplexed

ThunderKittens is a DSL built on top of CUDA in-
tended for programming tensor kernels on NVIDIA’s most
powerful GPUs. ThunderKittens provides a simpler level
of abstraction than raw CUDA while achieving comparable
performance on important kernels like matrix multiply and
forward attention. We chose to use ThunderKittens to ex-
plore modern GPU programming techniques beyond CUDA
and to facilitate development of our kernels. This section
explores the major differences that set ThunderKittens apart
from CUDA.

ThunderKittens is fundamentally designed for large ten-
sor workloads, and this focus is made apparent in its com-
pute model. In ThunderKittens, the fundamental unit of
computation is a 256-element (16 by 16) square matrix
tile. As a fundamental unit, tiles replace scalar registers
and compose shared and global memory. This choice bakes
matrix tiling into ThunderKittens, making matrix kernels
easier to read. It also aligns better with the GPU hardware
as tensor cores operate on tiles instead of scalar registers.

ThunderKittens exposes a framework for producer-
consumer workflows, called prototypes. A prototype is de-
fined by the different stages of computation, either load-
compute-store-finish (lcsf) or load-compute-finish (lcf); our
project uses the lcf prototype. Prototypes use a warp-
specialized producer-consumer model: producer warps load
some data into shared memory, which is then computed on
by consumer warps. This process iterates until the work-
load is compete. Coordination between warps is handled
by driver kernels using semaphores, which signal when
inputs to a phase are ready for processing. The driver kernel
sets up shared memory, maintains intermediate state, and
shares semaphores. This behavior is abstracted away from
the programmer, who is not meant to edit the driver kernel
directly.

ThunderKitten prototypes are programmed using tem-
plate metaprogramming. The user defines two structures: a
layout and a kernel template. The layout defines the structure
of the kernel’s operand matrices and of its shared memory.
The kernel template provides functions to define the be-
havior of producer and consumer warps. For producers, the



template defines a load function to write into shared mem-
ory. Consumers require definitions of compute and finish
functions. Both require their own setup functions, as well
as one global setup function common to both warp types.
The setup functions run once per loop iteration and specify
control flow for the kernel; this allows load, compute, and
finish functions to be agnostic of iteration index. The setup
functions receive mutable iteration state variables from the
driver kernel, allowing them to set iteration bounds and setup
addresses according to iteration index.

3.2. Symmul in ThunderKittens

This section describes how we wrote our symmul kernel.
Suppose A is n×m. Like for the example implementation of
GEMM in ThunderKittens, our symmul kernel uses 128x256
blocks with a base tile size of 64x64. All values are in bf16
except the accumulator state, which is float32.

What sets symmul apart from GEMM is that it computes
over only half the blocks. For any matrix multiplication, we
begin by assigning to each SM a static list of output blocks
that it is responsible for computing. In GEMM, we assign
SMs in an order that allows for coalesced memory accesses.
In symmul, coalescing loads becomes trickier because of the
jagged diagonal. Nonetheless, we use the same coalesced
pattern, which we hypothesize is helpful below the diagonal.

Within the load-compute-store framework, the place we
assign block coordinates (row, col) to an SM is in com-
mon setup. If row < col, we designate the block as upper
triangular. Rather than shut off the SM entirely, we iterate
the SM forward to whatever is the next block in its static
assignment of blocks.

Under this scheme, it is important that all SMs are as-
signed a similar amount of blocks in the lower triangular part
of the matrix. Otherwise some SMs will rapidly run out of
work, idling. One solution—which we use—is to initialize
one SM per block, taking advantage of the GPU’s scheduler
to ensure any SM with upper triangular coordinates stops
and is repurposed to another block. A more sophisticated
method could be to map the linear task id directly to lower
triangular blocks. One could devise an ordering that yields
coalesced loads for blocks below the diagonal. We do not
explore this second approach.

When symmul is launched, it first assigns block coordi-
nates to each SM. It also assigns the number of compute
iterations. Since we accumulate over increments of size
64 according to the base tile, the number of tensor core
instructions we need—and hence the number of compute
iterations—is m/64.

Next, producer and consumer warps work in parallel.
Producer warps load in rows of A and columns of B to
set up the outer product. Consumer warps feed these outer
products into the tensor cores to accumulate results.

When a consumer warps finishes, it stores its result
twice because of symmetry. First it stores its output in the
lower triangular coordinate normally. Second, it transposes
the output and then writes it to the transposed coordinate.
Implementing this transposed write required hunting down

many devils in the details, including creating temporary
register tiles and shared memory tiles.

In reflection, ThunderKittens primitives mean the final
kernel is short. But the primitives are built out of a long
chain of templates and types, triggering many times that
we needed to trace through the source code to figure out
how to make simple changes. Once a kernel is written and
correct, however, that same structure means ThunderKittens
automatically gets lots of little things right, from memory
access patterns to keeping tensor cores fed.

3.3. Benchmarking in PyTorch

Calling our kernel from PyTorch is easy:

import symmul
import pytorch

dev = "cuda"
bf32 = torch.bfloat32
size = (4096, 4096)

A = torch.ones(size, device=dev, dtype=bf32)
B = A.T.contiguous()
C = torch.zeros(size, device=dev, dtype=bf32)

symmul.symmul(A, B, C)

We compare to two baselines: PyTorch’s GEMM and
cuBLAS’s symmetric rank k update command, syrk. This
second kernel is meant to implement an XXT operation.
We test on the problem size 8192 by 8192.

TABLE 1. PERFORMANCE COMPARISON OF MATRIX MULTIPLICATION
KERNELS ON VARIOUS INPUT SIZES IN TFLOPS

Kernel (TFLOPS) 1024x1024 4096x4096 8192x8192
PyTorch’s GEMM 126 743 774
cuBLAS’s SYRK 41 N/A N/A
ThunderKittens’ GEMM 165 789 775
ThunderKittens’ SYMMUL 143 1041 1510

To evaluate our custom kernels, ensure correctness, and
measure performance against existing implementations, we
wrote a simple PyTorch benchmarking framework. We use
PyBind11 to expose our symmul and matmul ThunderKit-
tens kernels, which lets us invoke them as PyTorch functions
in local testing and benchmarking scripts.

Running our symmetric multiply kernel alongside the
base implementations highlights the speedups our kernel
attains. On a 8192 × 8192 input size, our implementation
consistently runs at 1510 TFLOPS—more than the max
throughput of an H100, which is 989 TFLOPs, because
we are maintaining the denominator of how many FLOPs
would be required for GEMM. Comparatively, the optimized
ThunderKittens GEMM kernel reaches 775 TFLOPS for the
same input size.



Figure 1. Current correctness results for symmul

4. Next Steps

4.1. Ensuring correctness on arbitrary inputs

At time of writing, our kernel works correctly when the
input matrix A is all ones. Our kernel has incorrect behavior
in the transpose-and-store step. Though this step seems
simple, ThunderKittens hides a lot of complexity that we
must contend with at this stage. For one, our matmul kernel
uses blocks of size 128 × 256. Two consumer warpgroups
do all the computation, each handling a “wide tile” of size
64 × 256. Each of four warps is responsible for holding a
16×256 sliver of this wide tile in its registers. Coordinating
each of these warps collaboratively is easy—as long as the
warps each hold rows. But when we transpose, the rows
become columns. Communicating these stores into global
memory becomes a tricky task, because ThunderKittens
swizzles matrix layouts under the hood. Perhaps there is a
way to communicate that the layout should swap to column
format. Then the transpose-and-store step would become
simple and elegant in code. We have confirmed the rest of
the code runs correctly. Namely, we are able to compute
results on only the lower triangular half of the output (Figure
1).

4.2. Distributing Newton-Schulz

It is often in the interest of modern machine learning
applications to train large models (i.e., later-generation GPT-
scale models), which tend to have weight matrices too large
to fit into the memory of a single GPU. This challenge
requires one to design a training setup that distributes the
model’s weights across multiple GPUs, which are ideally
communicating over a high-speed channel, while maximally
maintaining parallel computation and salvaging throughput.

A popular approach to this problem is tensor-parallel
sharding, which divides the model’s layers across multi-
ple GPUs then combines the partial results computed by
each machine in parallel [5]. This approach is efficient for
operations that can be split across GPUs for simultaneous
computation, such as basic matrix multiplication, which can
be divided into independent subprocess blocks.

Newton-Schulz orthogonalization, however, requires it-
erative updates with global dependencies, making shard-

ing significantly more complex. Finding effective ways to
distribute this operation is essential to efficiently training
large models with the Muon optimizer. Therefore, an im-
portant next step toward achieving accelerated training of
large models with the Muon optimizer is writing custom
Newton-Schulz distributed kernels using NVIDIA Collective
Communications Library (NCCL) primitives.

We initially planned to develop versions of our symmet-
ric multiply kernels that support tensor-parallel training and
test the extent to which we could maintain throughput when
running modded-nanogpt [6] with our kernel bindings.
To prepare for this, we spent some time experimenting
with NCCL and the modded-nanogpt pipeline. Finding
custom kernel development with ThunderKittens to be more
involved than we expected, we ultimately decided to focus
our energy toward optimizng the symmul kernel and leave
the distributed component as an opportunity for future work.

There is no native support for NCCL in ThunderKittens
prototypes. Given ThunderKittens’ stated goal of facilitating
kernel development, we see this as a significant area for
potential future work. We see two potential entry points for
NCCL instructions: kernel templates and prototype drivers.
Using NCCL in kernel templates would give the program-
mer more direct control of inter-device communication.
Given that the prototype model abstracts away similar mem-
ory management and scheduling, there is a case for ab-
stracting inter-device communication to prototype drivers.
If we had more time, we could have experimented with
a high-level extension to ThunderKittens prototype drivers
with NCCL primitives.

5. Conclusion

We have shown that it is possible to make a faster sym-
metric multiplication kernel, which can further accelerate the
Muon optimizer and ultimately speed up training in machine
learning.

There are more optimization opportunities we have not
explored. Our work focused on leveraging symmetry to
avoid unnecessary computation, but we have yet to examine
ways to exploit the symmetry of X and X⊤ when loading
data into shared memory. There are likely tricks that would
make a symmetric matrix multiplication kernel even faster.

Working with ThunderKittens brought both great chal-
lenge and great reward. Because the framework is so new, its
documentation is sparse. We had to look through the entire
codebase, going line-by-line through core files, to under-
stand how everything works. Once we began to overcome
the steep learning curve, we appreciated the ease of writ-
ing kernels. We have yet to fully explore the framework’s
capabilities or understand its nuances.

Acknowledgments

Thank you to the teaching staff in 6.S894 for unusually
pedagogical labs and your enthusiasm for the subject! We
are also grateful to Ben Spector for helping us learn the
ropes at ThunderKittens early in the project.



References

[1] Keller Jordan et al. Muon: An optimizer for hidden lay-
ers in neural networks. 2024. URL: https://kellerjordan.
github.io/posts/muon/.

[2] Jeremy Bernstein and Laker Newhouse. “Old Opti-
mizer, New Norm: An Anthology”. In: Workshop on
Optimization for Machine Learning. 2024.

[3] Jeremy Bernstein and Laker Newhouse. Modular Du-
ality in Deep Learning. 2024. URL: https://arxiv.org/
abs/2410.21265.

[4] Åke Björck and C. Bowie. “An Iterative Algorithm for
Computing the Best Estimate of an Orthogonal Ma-
trix”. In: SIAM Journal on Numerical Analysis (1971).

[5] Mohammad Shoeybi et al. Megatron-LM: Train-
ing Multi-Billion Parameter Language Models Us-
ing Model Parallelism. 2020. arXiv: 1909 . 08053
[cs.CL]. URL: https://arxiv.org/abs/1909.08053.

[6] Jordan Keller. Modded NanoGPT. Accessed: 2024-
12-10. 2024. URL: https : / /github.com/KellerJordan/
modded-nanogpt.

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://arxiv.org/abs/2410.21265
https://arxiv.org/abs/2410.21265
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt

	Introduction
	What is Newton-Schulz?
	ThunderKittens implementation
	ThunderKittens: A Guide for the Perplexed
	Symmul in ThunderKittens
	Benchmarking in PyTorch

	Next Steps
	Ensuring correctness on arbitrary inputs
	Distributing Newton-Schulz

	Conclusion

