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Abstract 

We compare algorithms for minimizing continuous, multivariable functions in the 
context of optimizing hyperparameters for recurrent neural networks. The algorithms 
tested are gradient descent (first order), Newton’s method (second order), and 
Quasi-Newton methods (second order). Our discrete objective function is the cross-entropy 
loss of the confidence of an RNN replicating the complete works of Shakespeare after α 
steps, averaged over β iterations. α and β are constant for any specific computation but 
vary throughout the study. We found that Gradient Descent performs best, though not well; 
the second order methods are unstable because the objective function is ill-defined with a 
small β. This work translates into models that learn more with fewer computational 
resources. For mathematics, this confirms that second order methods generally perform 
poorly on ill-defined functions. 
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Background 

Despite its explosive success in recent years, machine learning is a nascent field. The 
concept of a neural network itself is only about fifty years old, and it has been used 
effectively for less than a decade. There is still, therefore, much left to learn about the 
mechanics and interactions of neural networks under different types of data, different 
architectures, and, the focus of our study, different hyperparameters. 
 
 

Introduction 

The class of neural network studied in our investigation is the recurrent neural 
network, or RNN. The architecture of RNNs factor in the previous output as input, giving it 
a kind of memory. RNNs are, because of this, well suited to predicting sequences of data 
like text and numbers. In our study, we vary the hyperparameters of RNNs learning to 
generate Shakespeare to find the optimal configuration for fast learning. 

Hyperparameters are arbitrary numbers that control how neural networks learn. 
The simplest example of a hyperparameter is the learning rate, a constant multiplied into 
the gradient of the cost function before applying it to the weights. We also use two other 
hyperparameters: the size of the hidden layer and how far back the RNN sees (sequence 
length). 

Our investigation compares the efficacy of three optimization algorithms when 
applied to tuning the hyperparameters of our RNNs. The ideal set of hyperparameters, 
what these algorithms are searching for, is one which makes the RNN learn to write 
Shakespeare well after less training than another RNN learning under random 
hyperparameters. The algorithms we tested are Gradient Descent, Newton’s method, and 
Quasi-Newton methods. 
 
 

Procedure: 

We applied Gradient Descent, Newton’s method, and Quasi-Newton methods to 
minimize our objective function, the loss averaged β times of an RNN with randomly 
initialized weights trained on Shakespeare for α steps. The RNNs had three 
hyperparameters which the algorithms could change: the number of hidden neurons, the 
number of characters back it could see (previous hidden layer states), and the constant 
multiplied into the negative gradient during training, the learning rate. The algorithms 
could not, for example, deviate the number of hidden layers (1), the training method used 
(Adagrad), or the loss function (cross-entropy loss of confidence). Future investigation may 
uncover the effects of these untested hyperparameters. 
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Two of the hyperparameters tested were discrete, the number of hidden neurons 
(henceforth referred to as hidden size) and the number of characters back the RNN could 
see (henceforth referred to as sequence length). To work around this issue, we defined a 
new continuous objective function as the weighted average of the losses given each 
discrete parameter rounded up and down. An example will illustrate best. 

Let the algorithm request the loss if the hidden size is 40.25, the sequence length is 
12.8, and the learning rate is 0.1. The hidden size of 40.25 can be thought of as ¾ of the loss 
given hidden size 40 and ¼ of the loss given hidden size 41. The sequence length of 12.8, 
similarly, can be thought of as ⅕ of the loss given sequence length 12 and ⅘ of the loss given 
sequence length 13. The learning rate is continuous and plugged in directly. Naming the 
discrete objective function referenced above , the continuous objective function can(h, , )f s l  

then return 
 
 ..75  0.2 (40, 2, .1) .8 (40, 3, .1) ) .25  0.2 (41, 2, .1) .8 (41, 3, .1) )  0 · ( · f 1 0 + 0 · f 1 0 + 0 · ( · f 1 0 + 0 · f 1 0  

 

Upon the continuous objective function, we layered another condition. If any 
requested hyperparameter in the objective function is verifiably absurd, return a high and 

undesirable number ( ) to discourage further exploration. To this undesirable number,0  1 6  

we add an additional number representing how far the hyperparameter is from its 

reasonable range:  for hidden size,  for sequence length, and h 10)  ( − 4 2 s 5)  ( − 2 2 l .5)  ( − 0 2  

for learning rate. This additional term is quadratic so second order methods can detect it. 
The range for each hyperparameter is as follows. Hidden size must be between 20 

and 800; sequence length must be between 5 and 40; and learning rate must be between 
0.0001 and 1. These ranges were chosen roughly such that any RNN with a hyperparameter 
outside of its range performs badly. Thus, around the plains of minimization lie quadratic 
arches of undesirability meant to direct the search back to sanity. 
 

We ran a number of trials for each optimization algorithm. Each algorithm 
initialized the hyperparameters to a random number between 0 and 10 and terminated the 
search if the magnitude of the gradient at its current guess was less than 0.0001 (though 
this never happened). The arbitrary multivariable function they were given to minimize 
was the continuous objective function defined above. 
 

For Gradient Descent, we ran five high-level tests. Each high-level test included 
three low-level tests, which varied the step size. Each low-level test optimized for 10000 
steps and used a different constant to multiply into the negative normalized gradient (step 
size). The first used a step size of 0.1, the second 0.01, and the third 0.5. 

3 



The first three high-level tests of Gradient Descent used the continuous objective 
function given α = 100 and β = 1 for the discrete objective function. The fourth high-level 
test used α = 10 and β = 1. The fifth high-level test used α = 1 and β = 1 and reported its 
guess every 100 steps, along with a more intensive calculation of the gradient at the guess 
every 1000 steps (α = 1000 and β = 10). Although the more accurate gradient wasn’t 
applied in the algorithm, it was a useful proxy for the success of the less accurate gradients 
the algorithm used at each step. 
 

For Newton’s method, we ran two identical tests with α = 10 and β = 1, recording 
predictions every 10 steps. To avoid non-invertible matrix errors, prior to using the inverse 
Hessian, the determinant was calculated. If it equaled 0, Newton’s method reverted to 
Gradient Descent. The step size used was 10 in an effort to get the hyperparameters back to 
sanity, where the Hessian would be invertible, as quickly as possible. 

If the determinant was nonzero, the Hessian invertible, then the standard Newton’s 
method was used. The step was calculated as the negative inverse Hessian times the 
gradient. As Newton’s method generally predicts step size accurately, its steps weren’t 
scaled. 
 

For Quasi-Newton methods, we ran two tests, one per inverse Hessian update 
formula, recording predictions every step. Each test used the objective function defined by 
α = 10 and β = 10. The first test used the BFGS update formula; the second test used the 
DFP update formula. 

As in Newton’s method, the step at every iteration was defined to equal the negative 
inverse Hessian times the gradient. Quasi-Newton methods, however, only track an 
approximation for the inverse Hessian, so the step is the negative of this approximate 
inverse Hessian times the gradient. Unlike Newton’s method, though, the magnitude of the 
calculated steps isn’t trusted. We therefore used a backtracking line search to find the 
optimal magnitude for the calculated step to minimize the objective function. We used a 
lessening factor of 0.5 and a control of 0.99. With the notation of Armijo’s original paper, 
we used c = 0.99 and = 0.5.τ  

The addition of a backup Gradient Descent was also kept from Newton’s Method, 
though the scaling factor was changed from 10 to 1. Lacking the Hessian, however, the 0 
determinant heuristic for being stuck couldn’t be used. Instead, we observed that absurd 
hyperparameters caused the Quasi-Newton methods to freeze, not moving at all. Therefore, 
the Quasi-Newton heuristic we used for reverting to Gradient Descent was if the magnitude 

of the algorithm’s proposed step was smaller than  or if any hyperparameters were0  1 −6  

measurably absurd (hidden size < 20 or > 800, sequence length < 5 or > 40, learning rate < 

 or > 1).0  1 −6  
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The gradient was numerically approximated with the limit definition of partial 

derivatives and . The Hessian was numerically approximated with a recursive0  h = 1 −8  

implementation of the limit definition of mixed partial derivatives. See the code in section 
9, ​Code​. 
 
 

Results: 

Hyperparameters were converted into three dimensional coordinates so the 
algorithms could use them. The first dimension is the hidden size, the second is the 
sequence length, and the third is the learning rate. All coordinates are rounded to either 
four or six digits of accuracy depending on the required precision. Results are sectioned 
under their corresponding algorithm. 
 

Gradient Descent: 
 
Trials 1 - 3 (α = 100, β = 1, 10000 iterations)         (Fig 1A) 

Step Size Trial 1  Trial 2 Trial 3 

0.1 [24.7835, 7.3241, 0.9308] [20.6382, 7.6258, 0.7576] (not recorded) 

0.01 [20.2441, 9.8831, 0.3094] [19.9035, 9.0293, 0.9868] (not recorded) 

0.5 [36.7481, 35.9527, 0.2646] [66.4636, 39.7850, 0.9208] [74.5392, 18.9831, 0.2774] 

 
Trial 4 (α = 10, β = 1):              (Fig 1B) 

Step Size Trial 4 

0.1 [20.6689, 5.4620, 0.3758] 

0.01 [20.0701, 5.2175, 0.7085] 

0.5 [28.0586, 27.1379, 0.7804] 
 
Trial 5 (α = 1, β = 1):                            (Fig 1C) 

Step Size Trial 5 

0.1 [22.4090, 11.7156, 0.2462] 
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0.01 [20.3657, 5.0541, 0.8160] 

0.5 [31.4826, 32.9537, 1.1683] 
 

Intensive gradients and their magnitudes (α = 100 and β = 100) were calculated 
for each result of Fig 1A. For the reader’s convenience, all components are multiplied by 

, the value used for  in the limit definition of the partial derivative. Lower gradient0  1 −8 h  

magnitudes mean the guess is better, because the gradient serves as a proxy for how close 
the final guesses are to a minimum. The reason all gradient magnitudes are higher than 
might be expected is discussed in section 6, ​Analysis​, under Gradient Descent. 
 

Intensive Gradients (α = 100, β = 100, divided by  for convenience):0  1 8            (Fig 1D) 

Step Size Trial 1 Gradients Trial 2 Gradients Trial 3 Gradients 

0.1 [-0.66361387, 9.48057384, 
-2.37193118] 

[-3.44347236, 0.16334927, 
2.35988607] 

N/A 

0.01 [-0.30589072, 0.15317452, 
0.08640280] 

[-4.79179805, 
-4.06369183, -2.06258140] 

N/A 

0.5 [-1.20603242, -0.28046133, 
-11.54847267] 

[-623.41250076, 
569.28816667, 
257.37610905] 

[32.55462667, 
-10.97172678, 
-24.75223905] 

                                                                               (Fig 1E) 

Step Size Trial 1 Magnitudes Trial 2 Magnitudes Trial 3 Magnitudes 

0.1 9.79529077227 4.1777083648 N/A 

0.01 0.352841351 6.61280288613 N/A 

0.5 11.6146628823 882.595391071 42.3421284812 

 
Every 100 steps, trial 5 recorded its guess. The following are graphs of the 

predictions over time of trial 5. Each datum represents 100 steps of optimization after the 
previous, except on multiples of 100 when the test restarts with a new step size (0.1, then 
0.01, then 0.5). First (Fig 2A) is all three hyperparameters overlaid. Second (Fig 2B), third 
(Fig 2C), and fourth (Fig 2D) are graphs of each hyperparameter separately. 
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Fig 2A: all Gradient Descent hyperparameters 

 
Fig 2B: hidden size over time 
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Fig 2C: sequence length over time 

 
Fig 3D: learning rate over time 
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Newton’s Method: 
 
Trial 6 (α = 10, β = 1, step multiplier = 1):             (Fig 3A) 

Step Trial 6 

0 [2.56​3309​, 9.97​5360​, 7.96​5497​] 

10 [12.56​1629​, 9.97​5360​, 7.78​2208​] 

20 [20.56​1268​, 9.97​5360​, 5.65​3969​] 

30 [20.56​4417​, 9.97​5330​, 0.65​4158​] 

40 [20.56​7070​, 9.97​6808​, 0.65​4354​] 

50 [20.56​6863​, 9.97​6869​, 0.65​4446​] 

60 [20.56​6834​, 9.97​6864​, 0.65​4429​] 

70 [20.56​6844​, 9.97​6744​, 0.65​4288​] 

80 [20.56​6858​, 9.97​7455​, 0.65​4483​] 

90 [20.56​6887​, 9.97​7575​, 0.65​4435​] 

 
As is clear from the boldface final digits of trial 6, Newton’s method is taking very 

small steps. The reason for this is discussed in section 6, ​Analysis​, under Newton’s Method. 
Regardless, we consequently ran a trial in which the gradient descent backup is the same 
but each Newton’s method step is scaled by a factor of 1000. 
 
Trial 7 (α = 10, β = 1, step multiplier = 1000):      (Fig 3B) 

Step Trial 7 

0 [7.4375, 5.3365, 7.5200] 

10 [17.4360, 5.3365, 7.3455] 

20 [22.8466, 5.3394, 0.9031] 

30 [23.3507, 5.6824, 0.7586] 

40 [23.2082, 5.6415, 0.8135] 

50 [22.9045, 5.7803, 0.7647] 
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60 [22.7354, 5.8058, 0.7951] 

70 [22.3963, 5.7339, 0.3012] 

80 [22.3760, 5.7867, 0.3734] 

90 [22.3629, 5.7534, 0.3744] 

 

Intensive Gradients (α = 100, β = 100, divided by  for convenience):0  1 8            (Fig 3C) 

Trial 6 Gradient Trial 7 Gradient 

[-2.01919592, 0.66754092, -2.96560209] [1.07868134, -0.52292994, -0.10280518] 

                                                                               (Fig 3D) 

Trial 6 Magnitude Trial 7 Magnitude 

3.64932306 1.20315338 

 
Every 10 steps, trial 7 recorded its guess. Fig 3E is all three hyperparameters 

overlaid. Each datum represents 10 steps of optimization after the previous, except on 
multiples of 100 when the test restarts. 

 
Fig 3E: all Newton’s Method hyperparameters 
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Quasi-Newton Methods: 
 
Trial 8 (α = 10, β = 10, BFGS):                                    (Fig 4A) 

Step Trial 6 

0 [2.681075, 8.746468, 6.987274] 

10 [11.679926, 8.746468, 6.84345] 

20 [20.678913, 8.746468, 5.716134] 

30 [46.401594, 22.644959, -4.414161] 

40 [92.842201, -159.625745, -148.2645] 

50 [92.842281, -151.839258, -141.989903] 

60 [92.842529, -144.053257, -135.714704] 

70 [92.842619, -136.266045, -129.441009] 

80 [92.842619, -128.478271, -123.168012] 

90 [92.842619, -120.690901, -116.894512] 

 
Trial 9 (α = 10, β = 10, DFP):                                      (Fig 4B) 

Step Trial 6 

0 [9.592970, 5.979446, 1.928359] 

10 [19.592908, 5.979446, 1.893177] 

20 [43.503087, -1.290651, -0.430466] 

30 [66.303606, 40.219715, 11.952225] 

40 [66.303606, 39.219715, 2.952202] 

50 [-27.087827, -220.533407, 966.260186] 

60 [-23.070797 -218.277099, 957.384797] 

70 [-19.053640, -216.020328, 948.509583] 

80 [-15.036408, -213.763940, 939.634306] 

90 [-15.036408, -213.763940, 939.634306] 
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Intensive Gradients (α = 100, β = 100, divided by  for convenience):0  1 8            (Fig 4C) 

Trial 8 Gradient Trial 9 Gradient 

[0.0, -0.0002910, -0.00023433] [-0.00085091, -0.00047695, 0.00187790] 

            (Fig 4D) 

Trial 8 Magnitude Trial 9 Magnitude 

0.00037363.8401447 0.00211614 

 
Graphing every step of the Quasi-Newton method for BFGS and DFP gives the 

following. 

 
Fig 4E: all Quasi-Newton (BFGS) hyperparameters overlaid 
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Fig 4F: all Quasi-Newton (DFP) hyperparameters overlaid 

 
 

Analysis: 

Gradient Descent 
Gradient Descent was the most extensively studied algorithm and was also the most 

stable. Its outputs suffered most from the lack of computation available. With α = 100 and 
β =1, running a single trial with step sizes 0.1, 0.01, and 0.5 took over 40 hours on our 
machines. 

As discussed in ​issues​, the continuous objective function is ill-defined for β as a 
finite number. Although each algorithm was hurt by inconsistent derivatives this caused, 
Gradient Descent fared best. This is probably because it is a first order approximation. An 
error in the gradient, therefore, would stay as it is, while an error in a second order 
approximation would get squared. 

Though not perfect, the results of gradient descent can be tested. Note the intensive 
gradients of Fig 1D (calculated with α = 100 and β = 100) and their magnitudes from Fig 

1E. A random gradient would have a magnitude close to , as derivatives were calculated0  1 8  

with  and the objective function is ill-defined with respect to small changes in0  h = 1 −8  

inputs ( ). The change in the objective function, then, when divided by h, would belim
h→0

c
h = ∞  
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artificially large. Fig 1E shows that gradients generally had a magnitude around , some0  1 8  

greater, some lesser. 
It can therefore be inferred that Gradient Descent is a valid optimization method for 

hyperparameters but is inefficient. This returns to the issue of an ill-defined objective 
function; for large βs, the algorithm would likely not become confused and oscillate as it 
did in Fig 2A. Additionally, a small α diminishes the objective function’s ability to gauge 
the long-term benefits of a higher hidden size or lower learning rate. This may be why, for 
example, the gradient of trial 3’s 0.5 step size was higher than trial 1’s 0.01 step size. Even 
with α = 100 and β = 100, the objective function may have failed to detect the advantages 
of more hidden neurons. 
 

For the astute observer, the short plateau in learning rate directly following the 
resets every 100 steps was caused by an extreme difference in the perceived importance of 
minimizing learning rate versus minimizing sequence length and especially hidden size. 
Recall the sanity check from section 4, ​Procedure​. When hyperparameters are absurd, the 
sum of the squares of the differences between the absurd values and accepted reasonable 
values plus a high and undesirable number is returned as the loss. Because the hidden size 
and sequence length must be optimized on a significantly larger scale than learning rate, 
from the normalized gradient’s perspective, optimizing learning rate is of less importance 
until hidden size and sequence length are within range. This is why the plateau ends once 
the hidden size and sequence length are within reasonable range. 
 

Newton’s Method 
Newton’s Method wasn’t effective. It took steps that were either tiny or huge, never 

practical. It spent the majority of its thousand steps in Fig 3A, for example, using Gradient 
Descent to pick itself out of the early miscalculation that made the hidden size negative 
(around step 5). We theorize that these two modes, tiny steps and huge steps, are a result 
of the ill-defined objective confusing the second order approximations. Specifically, the 
mixed partial derivatives of the Hessian are either lined up into an artificially steep 
paraboloid or into a flat paraboloid. 

When the mixed partial derivatives align to a flat paraboloid, a huge step will be 
taken. The virtue of second order approximations is that, given a paraboloid, unlike first 
order approximations, they will jump to its critical point in a single step. In the case of a 
nearly flat paraboloid, the minimum will be very far from the starting point. In minimizing 
this flat paraboloid, Newton’s method will bring its hyperparameters far out of the 
reasonable bounds. Conversely, when the mixed partial derivatives align to a steep 
paraboloid, a tiny step will be taken. This is because steep paraboloids have minima close 
to the starting point. 
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We answer why the majority of steps are tiny with this explanation. Given an 
ill-defined objective function (small β), numerically approximated derivatives are mostly 
random. Additionally, the approximated derivatives will be artificially large. (See Gradient 
Descent from ​Analysis​ for why derivatives are overestimated.) Therefore, with nine 
elements in a Hessian of three dimensions, the chance of steep alignment far outweighs the 
chance of flat alignment. This translates to a much higher chance for tiny steps than huge 
steps. 
 

Quasi-Newton Methods 
The Quasi-Newton methods performed the worst of the trio tested, undistinguished 

by update formula. They weren’t capable of keeping the hyperparameters within the 
reasonable range. Once its Gradient Descent mode had taken the hyperparameters out of 
absurdity, like Newton’s method, the Quasi-Newton methods took unreasonably long steps. 
Unlike Newton’s method, however, the Quasi-Newton methods never took small steps. We 
have two theories on the matter. 

The first involves the backtracking line search. Using the Armijo-Goldstein 
condition, the condition which determines whether a proposed step length is satisfactory, 
(see section 8, ​Glossary​) requires assuming that the direction given for the line search 
points downward. This cannot be guaranteed with a low β’s ill-defined objective function. 
The direction which minimizes loss for one RNN initialized with random weights may 
maximize the loss for another in the short term. As a positive slope in the line search is 
equivalent to requesting a maximizing step, this is a possible cause for the long steps the 
Quasi-Newton methods took. 

The second theory is that the ill-defined objective function led to incorrect and large 
approximate inverse Hessians. The failure to predict accurate inverse Hessians would 
cause mostly random steps, as observed in Fig 4E and Fig 4F. Additionally, the huge 
gradients (see Gradient Descent from ​Analysis​ for why derivatives are overestimated) 
would cause huge inverse Hessians. Generally, a matrix with high values will have an 
inverse with low values, implying that a large approximate inverse Hessian would translate 
to a small approximate Hessian. Small Hessians, in turn, imply nearly flat paraboloids. As 
discussed in Newton’s method from ​Analysis​, second order approximations attempt to 
minimize the paraboloid defined by the Hessian in a single step. When the paraboloid 
defined is nearly flat, as would be the case in the Quasi-Newton methods, the step taken to 
minimize will be long. 
 

Issues 
With infinite computational power, the number of averaging steps, β, could be 

arbitrarily high. While the limit of  as β approaches positive infinity is a(h, , )f s l  
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well-defined function, at any finite whole number, the function is ill-defined. This is 
inherent to the random initialization of the RNNs. A certain random configuration may be 
better suited to learning Shakespeare than another. This variation is mostly independent to 
small changes in hyperparameters, meaning that numerical approximations to derivatives 
of the objective function are plagued by both inaccuracy and artificial magnitude. 

As such, it is expected when calculated gradients seem random. The hope is twofold: 
either, with a low α and β and many short steps, the computer will stagger its way to an 
optimum, the net effect of the random initializations cancelling over time; or, with a high α 
and β and a few calculated steps, the computer will converge to an optimum, cancelling 
the random initializations in the averaging step. 

Due to severe limitations in computer power, however, α and β were kept low. β, 
for this reason, was unused outside of the Quasi-Newton methods and calculating more 
accurate gradients. Further experimentation with a high α and β may fill the void left by 
our investigation. 
 
 

Conclusion: 

The most viable algorithm we tested was Gradient Descent. Newton’s method and 
the Quasi-Newton methods, being second order approximations, dealt poorly with the 
uncertainty of an ill-defined objective function. Newton’s method took steps either much 
too short or much too long. Regardless of the update formula used, the Quasi-Newton 
methods only took steps too long. 

Still, Gradient Descent is not an ideal solution. 10000 steps of its tuning with various 
step sizes failed to converge to a measurable optimum. Its oscillation, as seen in Fig 2A, 
may be due to the ill-defined objective function; a high β might reduce the variability in 
loss that plagued our calculations. The low α and β is the central shortcoming of our 
study. 

Unfortunately, raising α and β would require more computer power. Each 
evaluation of the continuous objective function runs  training steps. The cloud is a goodαβ  4  

option in this respect: it’s cheap and powerful. Future experimentation in optimizing 
hyperparameters with continuous algorithms will need to explore these options. 

Alternatives include discrete optimization methods. A grid search, analogous to a 
binary search but in multiple dimensions, is a good example. The search space (sane 
hyperparameters) is divided in half once per dimension. The function is evaluated at each 
box’s vertices, and the most promising box becomes the new space. The method continues 
as such, exploring the most promising solution at each step. Grid search is powerful in low 
dimensions and would take a calculable amount of time to reach a certain accuracy. Due to 
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time constraints, we didn’t test grid search. It may, however, prove to be a fruitful avenue 
for the aspiring hyperparameter tuner. 
 
 

Glossary: 
 
Neural Network: a set of layers of artificial neurons which each hold a number and connect 
to all neurons in the next layer with unique weights (connection strength). Neural 
networks have two or more layers: the input layer, the hidden layers (optional), and the 
output layer. 
 
RNN: recurrent neural network; neural networks that are fed the state of their hidden 
layer(s) from the previous use as input. RNNs function with a sort of memory. 
 
Hyperparameters: variables that control how a given neural network functions and learns. 
The most basic hyperparameter is the learning rate, a scalar multiplied into the negative 
gradient before it is applied to the weights. 
 
Architecture: the structure of layers and the properties of recurrence in a neural network. 
 
Gradient: the direction of fastest ascent in a multivariable function, used in machine 
learning to optimize neural network weights; an n long column matrix of a function’s 
partial derivatives evaluated at the input. 
 
Gradient Descent: a first order minimization algorithm for continuous and differentiable 
functions that, at every step, moves to the previous location minus a constant times the 
gradient of the function at that location. 
 
Newton’s Method: a second order minimization algorithm that subtracts the inverse 
Hessian of the function at the current location times the gradient of the function at the 
current location from the guess at each step. 
 
Quasi-Newton Methods: a family of second order minimization algorithms that aim to 
capture the speed of Newton’s Method without the inefficiency of both calculating and 
inverting the Hessian. Quasi-Newton Methods approximate the inverse Hessian at every 
step with varying update formulas based on previous first order information. The 
magnitude of the step taken in the direction of the approximate inverse Hessian times the 
gradient is determined by a line search. 
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Line Search: an algorithm which determines the optimal magnitude for a step in a 
continuous function which minimizes the function in the step’s direction. Line searches are 
usually not exhaustive, however, because any unnecessary computational resources spent 
on them could be more effectively diverted to improving the accuracy of the direction. The 
backtracking line search is a simple line search algorithm. 
 
Backtracking Line Search: an algorithm which limits the absolute minimization of an ideal 
line search to a finite number of integer choices. Integers, k, between 0 and n are tested to 
determine whether  minimizes to a satisfactory extent, where  is the originalτ  x + p k x  

location,  is the direction vector, and  is the lessening factor between 0 and 1. Thep τ  

satisfactory extent is defined by the Armijo-Goldstein condition, which states that, for a 
chosen control factor between 0 and 1 called c and the gradient of the function at  calledx  

g, a point is satisfactory if . Any large enough k and thus small(x τ ) (x) gcτ  f + p k ≤ f + p k  

enough  will satisfy this condition, so the backtracking line search, earning its name,τ k  

begins with k at 0 and increments it until the Armijo-Goldstein condition is met or k > n. 
 
 

Code: 
 
Selected excerpts of the code used are provided below. The complete code may be accessed 
at github.com/Arongil/Optimization. All code is written in Python 3.5. 
 
Mixed Partial Derivative (recursive implementation, multivariable_calculus.py): 
def mixedPartialDerivative(f, v, order): 

    # order is an array of dimensions by which to take partial derivatives. 

    # order = [0, 1]    ==> partial of f with respect to x then y. 

    # order = [1, 2, 2] ==> partial of f with respect to y then z then z. 

    h = 1e-6 # The limiting variable in the limit definition of the partial derivative. 

    if len(order) == 1: 

        # If order is 1, numerically approximate the partial derivative as usual. 

        step = v[:] 

        step[order[0]] += h 

        return (f(step) - f(v)) / h 

    # Peel the onion of layers: first, the outermost, then work inwards. 

    step = v[:] 

    step[order[len(order) - 1]] += h # Final derivative step done first. 

    # Recursively calculate partial derivatives for the final derivative. 

    return (mixedPartialDerivative(f, step, order[0:len(order) - 1]) - mixedPartialDerivative(f, v, order[0:len(order) - 1])) / h 

 
Gradient (multivariable_calculus.py): 
# gradient computes the gradient of a function of n dimensions, f, at position v. 

def gradient(f, v): 

    grad = [0 for i in range(len(v))] # This is the gradient array of partial derivatives. 

    h = 1e-12 # The limiting variable in the limit definition of the partial derivative is approximated with 1e-8. 

    for i in range(len(v)): 

        step = v[:] 

        step[i] += h 

        grad[i] = (f(step) - f(v)) / h # limit definition of the partial derivative 

    return grad 
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Continuous Objective Function (tuner.py): 
def continuousNetworkLoss(v): 

  # To make the discrete inputs of hidden_size and seq_length continuous for the loss function, 

  # take their weighted averages between the two closest integers. 

  lowHiddenWeight  = 1 - (v[0] - np.floor(v[0])) 

  highHiddenWeight = v[0] - np.floor(v[0]) 

  lowSeqWeight  = 1 - (v[1] - np.floor(v[1])) 

  highSeqWeight = v[1] - np.floor(v[1]) 

  discreteLowHidden  = lowHiddenWeight * (lowSeqWeight*networkLoss([int(np.floor(v[0])), int(np.floor(v[1])), v[2]]) + 

                                         highSeqWeight*networkLoss([int(np.floor(v[0])), int(np.floor(v[1])) + 1, v[2]])) 

  discreteHighHidden = highHiddenWeight * (lowSeqWeight*networkLoss([int(np.floor(v[0])) + 1, int(np.floor(v[1])), v[2]]) + 

                                          highSeqWeight*networkLoss([int(np.floor(v[0])) + 1, int(np.floor(v[1])) + 1, v[2]])) 

  return discreteLowHidden + discreteHighHidden 

 
Hyperparameter Sanity Check (RNN.py): 
def sanityChecks(self): 

      ### sanity checks ### 

      # Square how mistaken the hyperparameters     # 

      # are so second order expansions can operate. # 

      # Shift error by the bound so optimizers know # 

      # in which direction to guess.                # 

      loss = 0 

      if self.hidden_size < 20: 

          loss += (self.hidden_size - 410)**2 + 1e6 

      if self.hidden_size > 800: 

          loss += (self.hidden_size - 410)**2 + 1e6 

      if self.seq_length < 5: 

          loss += (self.seq_length - 25)**2 + 1e6 

      if self.seq_length > 40: 

          loss += (self.seq_length - 25)**2 + 1e6 

      if self.learning_rate < 1e-4: 

          loss += (self.learning_rate - 0.5)**2 + 1e6 

      if self.learning_rate > 1: 

          loss += (self.learning_rate - 0.5)**2 + 1e6 

      if loss == 0: # All hyperparameters are OK. 

          return True 

      return loss 

 
Newton’s Method Gradient Descent Fallback (newton.py) 
if np.linalg.det(H) == 0: # The Hessian is noninvertible (singular). Abandon it and revert to gradient descent. 

step = -grad.dot(10 / np.sqrt(grad.dot(grad))) # Subtract 10 times the unit vector in the direction of the gradient. 

else: # The Hessian is invertible: continue as normal. 

step = -(np.linalg.inv(H)).dot(grad).dot(1000) # step to the minimum 

 
Backtracking Line Search (quasi_newton.py): 
def lineSearch(f, n, grad, xk, pk): 

    # Given a function and a in which direction to travel, 

    # lineSearch solves for the optimal distance to travel to not under- or over-shoot. 

    # Backtracking line search will initialize alpha, the distance to travel, as a high number. 

    # alpha will be iteratively lessened until the Armijo-Goldstein condition is satisfied. 

    alpha = 1 

    control = 0.99 # 0 < control < 1 is a control parameter for the Armijo-Goldstein condition. See 

https://en.wikipedia.org/wiki/Backtracking_line_search. 

    lesseningFactor = 0.5 # 0 < lesseningFactor < 1 is multiplied into alpha at each iteration to lessen it. 

    m = pk.dot(grad.T).tolist()[0] # local slope in direction pk 

    t = control * m # Store this value for later access in the condition. 

    fxk = f(xk.tolist()[0]) 

    # Armijo set control and lesseningFactor to 1/2 in his original paper, as done here. 

    # Now, lessen alpha until the condition is satisfied. Break after 40 steps in case something went wrong. 

    for i in range(20): 

        # If the Armijo-Goldstein condition is met, terminate. Otherwise, lessen alpha. 

        if f((xk[0] + alpha*pk).tolist()) <= fxk + alpha*t: 

            break 

        alpha = alpha * lesseningFactor 

    return alpha 

 
BFGS and DFP Inverse Hessian Update Formulae (quasi_newton.py): 
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def BFGS(V, sk, yk): 

    ykskT = yk.dot(sk.T) 

    return (1 + yk.dot(V).dot(yk.T)/ykskT)*(sk.T).dot(sk)/ykskT - (V.dot(yk.T).dot(sk) + (sk.T).dot(yk).dot(V))/ykskT #(1 + 

(yk.T).dot(V).dot(yk)/skTyk)*(sk.dot(sk.T))/skTyk - (sk.dot(yk.T) * V+ V.dot(yk).dot(sk.T))/skTyk 

 

def DFP(V, sk, yk): 

    VykT = V.dot(yk.T) 

    return (sk.T).dot(sk)/yk.dot(sk.T) - (VykT.dot(yk).dot(V))/yk.dot(VykT) 

 
Quasi-Newton Step and Gradient Descent Fallback (quasi_newton.py): 
grad = np.array([mvc.gradient(f, xk.tolist()[0])]) 

# Calculate direction by Newton's Method with an approximated inverse Hessian. 

pk = -V.dot(grad[0]) 

# Perform line search to calculate step size, alpha. 

alpha = lineSearch(f, n, grad, xk, pk) # Calculate to find next point after step. 

sk = alpha*pk # step at iteration k 

if sk.dot(sk) < convergenceSquared or not sanityCheck(xk.tolist()[0]): # Hyperparameters are probably wacky. Revert to Gradient Descent. 

    step = -grad[0].dot(1 / np.sqrt(grad[0].dot(grad[0]))) # Subtract 0.1 times the unit vector in the direction of the gradient. 

    xk = xk + step 

    continue 

sk = np.array([sk.tolist()]) 

xk_next = xk + sk 

# Now, for the new xk, update the approximate inverse Hessian with BFGS. 

yk = np.array([mvc.gradient(f, xk_next.tolist()[0])]) - grad 

xk = xk_next 

#### Update the inverse Hessian with a combination of DFP and BFGS. For more details, see 

en.wikipedia.org/wiki/Broyden–Fletcher–Goldfarb–Shanno_algorithm. 

V = V + DFP(V, sk, yk) # + BFGS(V, sk, yk) 
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Samples: 
 

Below is a 2000 character sample of Shakespeare generated by an RNN trained for 
100000 steps with hyperparameters from Fig 1A (Gradient Descent). The following link 
has samples from all optimized hyperparameters from Fig 1A, Fig 3A, and Fig 3B. The 
Quasi-Newton methods returned unusable hyperparameters, so their results weren’t 
sampled. 
 
https://docs.google.com/document/d/1TEWN6zrRn-GlkaOtPP6IJODOwUpv8Wwu4M8iXa
5KfQ4/edit?usp=sharing  
 
Sampling 2000 characters from [36.7481, 35.9527, 0.2646] after 100000 training steps gives 
 
nkigh. 
 
MEDRIU: 
Hour fay, it lighs im eak it upan exoll 
griend. 
Dhe I day a le, thosoprerss. 
 
Fordant ho 
W'll? shan 
Mysroudr's 'trick o's macltar you: yes: 
to proke in gexen: 
Will swan us this afore'd, his corvole 
esmorlingiss I and youles thly wo my by 
me, pun toicked. I yaur'd meat of carded 
shald in's ull of ubocriof heacks no radaret 
in in and weert, 
If shilk. 
 
MENENIUS: 
Sion mich, 
Maved, 
And beake, 
Thap your: 
Thim ins! 
Lerve wilene, extey 
To grome. 
 
CODYOLINIA: 
The whe couiwies esterut thee 
All. I weal you to must icy To mamed 
hace, we pigh the lockes. 
 
CRUDINININIUM:UFoDINIUS: 
Think to shy have comells---eal, let eyen! 
sit espellsroud worle 
That frowrres 

The say cund when, be the as hesid-. I the 
ink, 
Didse hicher alere allssmellar my caur ang 
The extarse sone that ward outt, comast. 
 
MENENIUS: 
Whour laad. 
 
MORTIUSINILA: 
Weme. 
 
CUCINIUS: 
Haje's eden's'n. 
 
VIMISS: 
Honds 
I'rrey pare owre, heil: 
first louge, 
Will you be thin'clss, goud his halr; Toome 
fills jepore 
Wifl, say mud gread yike whou the that 
hamrman,-- 
I, his nengom Corte dorduifite'd thinh to 
oul our quave bes haver, cho the sor you 
as mall have gon him: 
God you chaurse, thime fore this thincite. 
Time hime. 
 
PEUCUSeUVUSIUS: 
As inss. I you you: 
The hir in verr'd munt, coursall roy, by 
imear dist; 
As locd 
Arrer. 
 
COLINIUS: 

I'lr! Col have in revaak 
Thee she that hids: the fill tourl mile cerse 
deeage his emery Po heedy cour sirind. 
Huscupry som why caRave 
fore theadn pooly, 
Thidh: 
And sive thous llokd deare, Musious. 
 
COMPEYOLUMANIUS: 
Wo I wo, suciking your te efel gtenss, 
Now, it so goes ouy, 
Seeth 
And linges graod itt langss finv, 
Do do you. 
 
Fohe housofund's cod of to, sirvor from 
fing you bour hall have poof morywite ho 
him your Seak sow? lord thes llot. 
 
MENEUS: 
A them to ruve! 
Whle lebr, 
And froye. 
 
Mied life grave! 
 
VAAUDILIS: 
A deald ousnand belith genvers 
The whinney losen 
To'es ond, to whenise sirspy him, or blet! 
 
VOLUS: 
All of to heers, lorded 
Pill, 
For-hid allshem: 
Murby hese 
Themand where y. 
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